Lessons from practice

Severe hypoglycaemia secondary to chronic opioid-induced hypothalamic-pituitaryadrenal axis suppression: an under-recognised phenomenon

Clinical record

49-year-old woman with type 2 diabetes mellitus was hospitalised with critical hypoglycaemia (blood glucose level, 0.9 mmol/L; reference interval [RI], 3.5-5.4 mmol/L). The hypoglycaemia was initially attributed to reduced oral intake and her insulin regimen (NovoMix 30, 40 units twice daily). However, persistent hypoglycaemic episodes, despite insulin discontinuation, required intravenous dextrose boluses over a 12-hour period. Comorbidities included obesity (body mass index, 30.4 kg/m²), hypertension and migraines managed with codeine and oxycodone at a dose equivalent to 80 mg of oral morphine per day. This raised suspicion of opioid-induced central adrenal insufficiency (OIAI). She denied weight loss and nausea; however, reported significant lethargy.

The diagnosis of OIAI was supported by a critically low morning serum cortisol level (9 nmol/L; RI, 155–599 nmol/L), and an adrenocorticotropic hormone (ACTH) level less than 1 ng/L (RI, 7.2–63.3 ng/L). Thyroid function was normal (thyroid-stimulating hormone, 3.5 mIU/L; RI, 0.27-4.2 mIU/L; free thyroxine, 13.1 pmol/L; RI, 12.0-22.0 pmol/L) with suppressed gonadotrophins. The patient was taking the combined oral contraceptive pill (OCP). A magnetic resonance imaging scan of the pituitary showed normal anatomy, with no sellar mass or radiological signs of hypophysitis.

The patient was commenced on hydrocortisone (20 mg morning, 4 mg midday, 4 mg evening) and was counselled on sick day management. Insulin doses (NovoMix 30) were reduced to 32 units twice daily and the OCP was no longer given. Neurologist-led efforts to reduce the patient's opioid intake were unsuccessful due to poor response to alternative migraine treatments. Her lethargy improved and no further hypoglycaemic episodes occurred. Low ACTH levels with peak cortisol levels of 200 nmol/L (RI, > 450 nmol/L) on cosyntropin stimulation tests (CSTs) conducted at the one-year and six-year marks confirmed unresolved chronic OIAI, warranting indefinite hydrocortisone therapy.

2 University of New South Wales, Sydney, NSW.

1 Sutherland Hospital,

Michael Do^{1,2}

Malgorzata M

Brzozowska^{1,3}

Sydney, NSW.

Annabelle G Hayes^{1,2}

3 Garvan Institute of Medical Research, Sydney, NSW.

michael.do@health. nsw.gov.au

Discussion

Hypoglycaemia in type 2 diabetes mellitus is typically attributed to antidiabetic medications; however, the diagnosis of adrenal insufficiency, although rare, should be considered in severe or prolonged

hypoglycaemia. The clinical manifestations of adrenal insufficiency can be non-specific and resemble those caused by opioid therapy and the underlying conditions requiring opioid treatment. Other causes of adrenal insufficiency such as space-occupying lesions, pituitary apoplexy, head trauma and drug-induced adrenal insufficiency, including exogenous steroids, were absent in the patient and should be excluded. Notably, the patient's serum cortisol level was strikingly low despite OCP use, which elevates total cortisol concentrations by increasing corticosteroid-binding globulin.³

Chronic opioid use is widespread in Australia, with 3.1 million Australians prescribed opioids in 2016–17, predominantly oxycodone. However, prevalence data of OIAI stem from small, retrospective studies with significant variability in clinical contexts, opioid dosages, therapy duration and administration routes.⁵ Consequently, chronic opioid use remains an underrecognised cause of adrenal insufficiency.

Opioid-induced hypothalamic-pituitary-adrenal (HPA) axis suppression is thought to occur through the inhibition of corticotropin-releasing hormone (CRH) via central G protein-coupled opioid receptors.⁶ Additionally, opioids act on pancreatic opioid receptors, activate the sympathetic nervous system, and modulate glucoregulatory hormones including insulin, glucagon, epinephrine and cortisol. Individual susceptibility may vary due to differences in opioid receptor affinity or interleukin-1β function on CRH.6

Consistent with our report, OIAI appears to be dosedependent with affected patients typically using daily morphine-equivalent doses exceeding 60 mg.8

Patients suspected of having OIAI should have the following tests: an 8 am to 9 am serum cortisol level test, an ACTH level test, and a 250 µg CST. A low baseline ACTH level indicates a central aetiology. International guidelines provide estimated thresholds for diagnosing adrenal insufficiency, including a morning cortisol level of less than 83 nmol/L and a peak cortisol level of less than 500 nmol/L in response to the CST. However, significant interassay variability underscores the importance of adhering to local laboratory-specific thresholds. These thresholds have only been retrospectively assessed in OIAI cases. Until further research is available, we recommend applying these thresholds to OIAI. 10

There is limited literature guiding the management of OIAI. Hydrocortisone should be commenced at a dosage of 15-20 mg daily, divided into 2 to 3 doses, with the largest dose taken on waking.

Although data on HPA axis recovery in OIAI are scarce, small case series indicate that up to 70% of patients may experience rapid recovery following opioid withdrawal. Chronic opioid use should be tapered gradually, with hydrocortisone therapy continued until HPA axis recovery is confirmed. However, the minimum opioid dose needed for HPA axis recovery and the timeline for this process remain uncertain, highlighting the need for alternative analgesic agents. 12,13

This near-fatal case underscores the importance of recognising opioid-induced HPA axis suppression in the current era of widespread opioid use while maintaining awareness of the endocrine effects of opioids. There remains a significant gap in data regarding the impact of opioids on the hypothalamus and pituitary, highlighting the need for further research to improve the prevention and treatment of HPA axis suppression in people with chronic opioid use and complex comorbidities such as diabetes mellitus.

Lessons from practice

- Consider opioid-induced adrenal insufficiency (OIAI) as a potential cause of severe hypoglycaemia in patients on chronic opioid therapy.
- Standard guidelines for diagnosing adrenal insufficiency, including morning cortisol measurements and adrenocorticotropic hormone stimulation tests, may be applied but have not been prospectively validated in opioid-treated patients.
- Hydrocortisone is recommended for the management of OIAI, and tapering opioid use is advised when aiming for the restoration of hypothalamic-pituitary-adrenal (HPA) axis function.
- A significant knowledge gap exists regarding the mechanisms underlying opioid-induced HPA axis suppression and the timeline for its recovery.

Open access: Open access publishing facilitated by University of New South Wales, as part of the Wiley - University of New South Wales agreement via the Council of Australian University Librarians.

Patient consent: The patient provided written consent for publication.

Competing interests: No relevant disclosures.

Provenance: Not commissioned; externally peer reviewed. ■

© 2025 The Author(s). *Medical Journal of Australia* published by John Wiley & Sons Australia. Ltd on behalf of AMPCo Ptv Ltd.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

- 1 Lee SC, Baranowski ES, Sakremath R, et al. Hypoglycemia in adrenal insufficiency. Front Endocrinol (Lausanne) 2023; 14: 1198519
- 2 Rushworth RL, Torpy DJ. The changing epidemiology of adrenal insufficiency: iatrogenic factors predominate. J Endocr Soc 2023; 7: bvad017.
- 3 Bäcklund N, Lundstedt S, Tornevi A, et al. Salivary cortisol and cortisone can circumvent confounding effects of oral contraceptives in the short synacthen test. *J Clin Endocrinol Metab* 2024; 109: 1899-1906.
- 4 Australian Institute of Health and Welfare. Opioid harm in Australia and comparisons between Australia and Canada. Canberra: AIHW, 2018 [updated Aug, 2023]. https://www.aihw.gov.au/reports/illicit-use-of-drugs/opioid-harm-in-australia/summary (viewed Aug 2024).
- 5 Patel E, Ben-Shlomo A. Opioid-induced adrenal insufficiency: diagnostic and management considerations. Front Endocrinol (Lausanne) 2024; 14: 1280603.
- 6 Donegan D, Bancos I. Opioid-induced adrenal insufficiency. *Mayo Clin Proc* 2018: 93: 937-944.
- 7 Koekkoek LL, van der Gun LL, Serlie MJ, et al. The clash of two epidemics: the relationship between opioids and glucose metabolism. *Curr Diab Rep* 2022; 22: 301-310.
- 8 Lamprecht A, Sorbello J, Jang C, et al. Secondary adrenal insufficiency and pituitary dysfunction in oral/transdermal opioid users with non-cancer pain. *Eur J Endocrinol* 2018; 179: 353-362.
- 9 Fleseriu M, Hashim IA, Karavitaki N, et al. Hormonal replacement in hypopituitarism in adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2016; 101: 3888-3921.
- 10 Colling C, Nachtigall L, Biller BM, Miller KK. The biochemical diagnosis of adrenal insufficiency with modern cortisol assays: reappraisal in the setting of opioid exposure and hospitalization. Clin Endocrinol (Oxf) 2022; 96: 21-29.
- 11 Li T, Donegan D, Hooten WM, Bancos I. Clinical presentation and outcomes of opioid-induced adrenal insufficiency. *Endocr Pract* 2020; 26: 1291-1297.
- 12 Tabet EJ, Clarke AJ, Twigg SM. Opioid-induced hypoadrenalism resulting in fasting hypoglycaemia. *BMJ Case Rep.* 2019; 12: e230551.
- **13** Kubbar A, Banerji M. Non-fasting hypoglycemia secondary to opioid induced adrenal insufficiency: a case report. *J Endocr Soc* 2021; 5 Suppl 1: A145-A146. ■