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Can Al help in the fight against COVID-19?

Artificial intelligence is being used in several different ways to curb the current pandemic
while demonstrating its potential to be even more effective for the next one

pandemic has accelerated efforts to incorporate

artificial intelligence (AI) into clinical care at a
time when, in many countries, health care systems are
facing unprecedented strain on their resources. Before
COVID-19, Al was already permeating into health
Care,1 and reviews are emerging of how it may assist in
efforts to combat the current pandemic.”” We describe
several applications of Al relevant to COVID-19, some
having had immediate clinical application, others
awaiting further refinement and evaluation.

The corolnavirus disease 2019 (COVID-19)

Detecting outbreaks, tracing contacts and shaping
public health responses

The Al-automated HealthMap system at Boston
Children’s Hospital first alerted the world about

the novel coronavirus on 30 December 2019, with

a Canadian-based Al model, BlueDot, issuing a
similar alert a day later. Researchers warned of the
top 20 destination cities for passenger arrivals from
Wuhan to which the disease could spread.” These
Al-enabled early warning systems use natural
language processing to scan social media, online news
articles and government reports for signs of emerging
pandemics to help inform governments and agencies
such as the World Health Organization. Al-assisted
analysis and modelling have also helped reconstruct
the progression of an outbreak, elucidate transmission
pathways, identify and trace contacts, and determine
real or expected impacts of various public health
control measures (Box 1).” !

How data are collected, and how these algorithms

are deployed, raise difficult issues of consent, privacy,
ethics and trade-offs between public and private good.
Some countries, like Taiwan, have mandated a top-
down approach to data harvesting. Others, including
Australia, encourage individuals to voluntarily
download apps to input symptoms and COVID-19
status and permit health authorities to access this
information in identifying potential contacts. However,
the efficacy of app-mediated contact tracing depends
on the level of population uptake, its ability to
accurately detect infectious contacts, and the extent

of adherence to self-isolation by notified contacts."”
Expert position statements regarding design, scope,
security and usage of such apps aim to prevent mission
creep towards unauthorised surveillance of society at
large.”

Screening for people who might be infected

Detecting COVID-19 in most health systems currently
involves testing symptomatic patients presenting

to stand-alone fever clinics, general practices or
emergency departments. This takes time, consumes
personal protective equipment and testing reagents,
and poses transmission risk to staff. Digital symptom

-

Public health applications

e An Al-mediated analysis of real-time mobile phone datain
Wouhan, along with detailed case data including travel history,
helped elucidate the role of case importation on transmission
in cities across China and showed how the drastic quarantine
and lockdown control measures implemented in China
substantially mitigated the spread of COVID-19.”

e In Taiwan, the government used its rigid household
registration system and mobile phone data to build an
algorithm that tracked individuals based on their recent travel
history.® Individuals identified as high risk were quarantined at
home and tracked via their mobile phone to ensure compliance
during the 14-day incubation period.

e The Al-enabled Australian Census-based Epidemic Model has
used data on age, occupation, sex, risk factors and contact
rates from COVID-19 cases in predicting the likely impact of
various public health control measures.” It showed that a
combination of international arrival restrictions, case isolation
and social distancing for at least 13 weeks, with compliance
rates of 80% or above, was the best approach to suppressing
the pandemic.

¢ Inthe US, streams of both static and dynamic data relating to
3100 counties from various sources (census, socio-economic
surveys, housing density, age distribution, population
comorbidity burden, and COVID-19 testing and infection rates)
are subject to machine learning in generating an interactive
pandemic vulnerability index dashboard which is used to
identify counties most at risk of major COVID-19 outbreaks and
assist government officials, public health professionals and
community leaders in implementing protective strategies.”®

e Machine learning models have assessed the infectious risk of
a given geographical area at the community level by analysing
large scale, real-time data on numbers of cases and deaths,
demographic data, traffic density and social media data (eg,
Reddit posts)."" The models estimate a risk index for that
area which individuals and relevant authorities can use to
implement appropriate mitigation strategies.

checkers soliciting information about symptoms and
risk factors may screen out individuals with very low
likelihood of COVID-19 who do not require testing.

In a pre-clinical study using hypothetical cases, an
Al-powered chatbot identified patients with COVID-19
with sensitivity, specificity and overall diagnostic
accuracy of 97%, 96% and 96%, respec’cively.1 However,
a side-by-side test of eight different chat boxes on the
same set of symptoms produced conflicting results,
suggesting the need to identify all the data elements
necessary for highest accuracy.

Data from phone hotlines used to pre-screen
individuals based on travel history and symp’coms,16
and from sensors (cameras, microphones, temperature
and inertial sensors) embedded within smartphones,
can all be used to detect COVID-19."” Neural networks
embedded in cameras can distinguish patterns of
tachypnoea caused by COVID-19 from those caused by
influenza or the common cold."”® Al-powered thermal-
scanning face cameras, capable of screening up to 200
people per minute, are being used by some Australian
private hospitals to remotely detect people with
fevers, sweating and discolouration, and prevent them
entering public spaces."”
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Facilitating earlier diagnosis

Diagnosing COVID-19 in sick patients presenting

to hospital is currently performed by reverse
transcription polymerase chain reaction testing of
nasopharyngeal and throat swabs. However, initial
tests may only be 70% sensitive and turnaround
times can be 24 hours or more.”” Machine learning
(ML) models combined with virus detection systems
using CRISPR (clustered regularly interspaced short
palindromic repeat; a tool which uses an enzyme to
edit genomes by cleaving specific strands of genetic
code) can rapidly design severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) assays which
have high sensitivity and speed.”’ Al has also been
used to design, within a few weeks, point-of-care
immunoassays for detecting viral antigens within 20
minutes, and such testing kits are now in use.?

For hospitalisations where reverse transcription
polymerase chain reaction testing is unavailable,
untimely, or yields negative results among patients
highly suspected of suffering COVID-19 pneumonitis,
deep learning algorithms applied to imaging data
captured by chest x-rays or computed tomography
(CT) chest scans may help early diagnosis. Studies
suggest that such cases show particular image patterns
which may, combined with polymerase chain reaction
testing, improve sensitivity to more than 90%.”***
However, radiological appearances of COVID-19

can overlap with other forms of lung inflammation,
imaging can be insensitive or misleading in mild

or asymptomatic cases,” and CT scanning creates

a transmission risk. Hence, the Royal Australian

and New Zealand College of Radiology and peer
societies overseas do not recommend CT scanning,
including Al applications, to screen for COVID-19, or
to diagnose it as a first choice test.” For patients with
lower respiratory tract illness who pose diagnostic
uncertainty, deep learning algorithms applied to chest
x-rays may be more feasible and impose less risk (Box
2).73% However, current algorithms may perform
poorly on the 80% of COVID-19 cases which are mild
and under-represented in the data used to train and
test these algorithms.” "

2 Diagnostic applications

e Adeep learning algorithm trained on 16 756 chest x-rays across
13 645 patients showed a diagnostic accuracy for COVID-19 of
92%.%” Other algorithms developed using 5941 chest x-rays
across four classes (normal, bacterial pneumonia, COVID-19
pneumonia and non-COVID viral pneumonia) have yielded
diagnostic accuracy of 90%.%°

e Using deep learning algorithms trained on computed
tomography data, a study of only 312 cases achieved sensitivity,
specificity and area under the curve for COVID-19 of 94%, 95%
and 0.98, respectively, in an independent validation dataset
of 1255 cases.”” In an accompanying reader study involving
five radiologists, only one was slightly more accurate than the
algorithm, which was also twice as fast as the radiologists.

e Using data from 4356 chest computed tomography scans
of 3322 patients, a deep learning algorithm distinguished
between COVID-19 and non-COVID pneumonia in independent
test sets with per examination sensitivity, specificity and area
under the curve of 90%, 96% and 0.96, and 87%, 92% and
0.95, respectively.*

Predicting risk of deterioration and poor
outcomes

Predictive models able to identify, on admission,
patients likely to deteriorate and require respiratory
support can assist triage and resource allocation
decisions. While older age, being male, and having
certain comorbidities (hypertension, cardiovascular
disease, diabetes) portend worse outcomes,’! these
factors do not necessarily predict outcomes at an
individual level, especially in younger patients. Some
ML algorithms can more accurately estimate risk

of death, development of acute respiratory distress
syndrome, and duration of hospitalisation

(Box 3).3%73¢

Augmenting remote monitoring and virtual care

Patients diagnosed with COVID-19 but not requiring
hospitalisation can be monitored remotely at home
using wearable devices measuring temperature, blood
pressure and arterial oxygen levels, and transmitting
these data to central virtual care units,” as exist in
some Australian hospitals. Al-assisted analysis alerts
staff to worsening status with activation of outreach
care or patient recall for admission.

Developing potential treatments and vaccines

In developing effective treatments for COVID-19, ML-
based repurposing frameworks have used algorithms
to identify baricitinib (for rheumatoid arthritis),*
atazanavir (an anti-human immunodeficiency virus
drug)39 and afatinib (for lung cancer)” as potential
treatments. Deep learning-based algorithms have
helped design six new molecules that could halt
SARS-CoV-2 replication*' and identify ten promising
agents from among 4895 drugs.*” Algorithms using

3 Prognostic applications

e Inastudy of 53 patients from two hospitals in Wenzhou,
investigators used clinical and laboratory data to train an
algorithm that identified mildly elevated alanine aminotransferase,
the presence of myalgias, and elevated haemoglobin, in this
order, as being most predictive (70-80% accuracy) of subsequent
onset of acute respiratory distress syndrome.*

e Inastudy of 133 patients, multivariate logistic regression
identified age > 55 years, hypertension, low serum albumin
levels, lymphopenia, elevated high sensitivity C-reactive protein
levels and progressive consolidation on chest computed
tomography (CT) scans as predictive of acute respiratory
distress syndrome.** By combining clinical and temporal CT
data, deep learning models outperformed the regression
model (area under the curve, 0.954 v 0.893).

o Regarding mortality risk, machine learning tools applied to
404 patients in Wuhan selected three biomarkers from a
pool of 300 features as predicting high risk of mortality with
more than 90% accuracy: elevated lactic dehydrogenase
levels (measure of cell injury); lymphopenia (measure of cellular
immunity); and raised high sensitivity C-reactive protein
levels (measure of inflammation).> In another study, neural
networks trained on 42 clinical and demographic factors
demonstrated 94% accuracy in predicting mortality.®

e Inidentifying patients at risk of long term hospitalisation, a
machine learning model trained on CT imaging data was able
to identify such patients with predictive accuracy of 95%.°




natural language processing applied to the PubMed
database have identified a poly-ADP-ribose polymerase
1 inhibitor (CVL218) as a potential candidate, currently
undergoing clinical testing."”

In expediting vaccine development, a deep learning
system predicted targetable protein structures of
SARS-CoV-2 within weeks compared with the months
normally taken using traditional experimental
approaches.”* Al has identified viral protein epitopes
most likely to be immunogenic but not cross-reacting
with human proteins,” while a reverse vaccinology
tool integrated with ML has identified genes that code
for potential epitopes.%

Al-powered knowledge graphs can interrogate
thousands of research articles and public documents to
link genetic and biological properties of virus-caused
diseases with composition and actions of existing
drugs. The COVID-19 Open Research Dataset contains
over 29 000 articles about SARS-CoV-2 and other
coronaviruses,” and is linked with several ongoing
ML projects that daily attract many questions from
research teams worldwide.

Assisting hospital responses

Al mapping tools can track hospital bed capacity, and
location, number and utilisation of intensive care unit
(ICU) and hospital beds across the United States.*
Another tool tracks numbers of ventilated patients in
that country and uses modelling software to predict
breaking points for health care networks,"’ estimating
a shortage of 9100 ICU beds and 115 000 non-ICU
beds for routine care at the peak of the pandemic. At
the frontline, autonomous Al robots can transport
drugs around the hospital and disinfect patients and
hospital areas by emitting ulraviolet light, reducing
interpersonal contact and saving time for medical and
ancillary staff.”

Cautions and limitations

While Al and ML can support COVID-19 responses
across various domains, most applications have not
reached operational maturity. The speed of research
means that many reports are preprints awaiting peer
review, while still attracting media coverage and
clinician adoption before proper evaluation. Most
ML models have relied on Chinese data, limiting
generalisability to other populations. Those trained
on limited and unrepresentative data are susceptible
to overfitting and can perform poorly on real-world
datasets. Many diagnostic and prognostic ML models
published to date are poorly reported, lack external
validation, and have high risk of bias.”

Overcoming these constraints requires scalable
approaches to data sharing. An international
consortium is assembling electronic health data

from over 96 countries for rapid visualisation of
regional differences and global commonalities.” Such
endeavours require balancing data privacy with public
health concerns, and collaboration between clinicians,
data scientists and policy makers across international
borders and between private and public sectors.

Conclusion

It is still too early to know the extent to which Al will
have an impact on the COVID-19 outbreak. Although
its role may be limited during the present pandemic, it
may certainly help with the next one.
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