FROM BENCH TO BEDSIDE 'K—J

Adult human neural stem cells for cell-replacement therapies

in the central nervous system

A STEM CELL IS AN UNSPECIALISED CELL which has the
ability to renew itself indefinitely, and, under appropriate
conditions, can give rise to a wide range of mature cell types
in the human body. As any disorder involving loss of, or injury
to, normal cells could be a candidate for stem cell replace-
ment therapy, the potential of stem cells is profound. Stem
cell therapy for the nervous system has generated particular
interest because of the debilitating nature and widespread
occurrence of neurodegenerative disorders.

The issue of stem cell research is politically and ethically
charged, as so much emphasis has been placed on the use of
stem cells derived from early human embryos. As a result,
stem cell technology is imbued in an ethical conflict between
destructive human embyro research on the one hand, and the
magnitude of the potential benefits to patients, on the other.
However, stem cells may be derived from a variety of sources,
including early embryos, fetal tissue and some adult tissues
(eg, bone marrow and blood).

Recently, a renewable resource of neural stem cells was
discovered in the adult human brain.! These cells may be a
candidate for cell-replacement therapy for nervous system
disorders. The ability to isolate these cells from the adult
human brain raises the possibility of autologous (self-to-self)
transplantation, which circumvents the logistical, safety and
ethical issues surrounding transplantation of various other
cell types (especially embryonic stem cells) into the human
central nervous system (CNS).

There have been reports that clinical trials with adult
human neural stem cells (HNSCs) have been, or are soon to
be, initiated for Parkinson’s disease.? In light of this, we assess
the scientific potential of autologous transplantation of adult
HNSC:s for the treatment of CNS disorders such as Parkin-
son’s disease and spinal cord injury.

Isolating human neural stem cells

The unequivocal localisation of neural stem cells in the
human CNS remains elusive. However, HNSCs have been
isolated from various regions of the embryonic,>> fetal®® and
adult human brain, including the hippocampus, the ventricu-
lar/ependymal zone,’'? and, more recently, from the cortex
and the amygdala.!> As far as is known, no one has attempted
to isolate HNSCs from the adult spinal cord. However, some
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m Human neural stem cells (HNSCs) can be isolated from
both the developing and adult central nervous system
(CNS).

m HNSCs can be successfully grown in culture, are self-
renewable, and can generate mature neuronal and glial
progeny.

m Embryonic HNSCs can be induced to differentiate into
specific neuronal phenotypes.

m HNSCs successfully integrate into the host environment
after transplantation into the developing or adult CNS.

m HNSCs transplanted into animal models of Parkinson’s
disease and spinal cord injury have induced functional
recovery.

m The risks associated with stem cell transplantation trials
are difficult to assess, but have not become overtly
apparent throughout preclinical investigations.

m Major hurdles remain to be overcome before human
clinical trials can be embarked upon.
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studies have reported isolating neural stem cells from the
human fetal spinal cord.>!*

HNSCs have been isolated from brain tissue obtained from
patients undergoing surgical procedures involving removal of
brain tissue for the treatment of epilepsy, tumours, or trauma.
These studies demonstrate that the adult human brain con-
tains a renewable source of neural stem cells which can be
successfully isolated through various surgical techniques.
This is encouraging in terms of autologous neural stem cell
transplantation, where cells would be harvested directly from
the brains of, for instance, patients with Parkinson’s disease.
The next key step is to show that the harvested cells are
sustainable and expandable in long-term culture systems, and
that they can be instructed to form specific neural cell types
on demand.

Culturing human neural stem cells

HNSC culture is rapidly becoming more routine. Embryonic
and fetal neural stem cells have shown remarkable functional
stability and renewal capacity for extended culture periods of
up to two years.>>!> They spontaneously differentiated into
the three fundamental neuronal lineages (neurones, astro-
cytes and oligodendrocytes) and were able to achieve full
neuronal maturation.®>!!

It has been reported that cultures of stem cells derived from
the embryonic human forebrain can be expanded up to ten
millionfold iz wvitro.* Such culture systems could provide an
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almost unlimited source of neural stem cells for cell-replace-
ment strategies. If adult neural stem cells are to be used in
clinical trials they must also be amenable to expansion into
clinically significant quantities. Unfortunately, these cells seem
to have a limited life-span in the culture dish,'®!“!® and it
remains to be determined whether they are stable at later
passages with regard to generating useful numbers of neurones.
Adult human neural cells do, however, exhibit many of the
promising characteristics of embryonic and fetal stem cells.

There are two major applications of HNSCs for the
treatment of CNS disorders. Firstly, HNSCs could be trans-
planted as undifferentiated cells whose subsequent differenti-
ation would be controlled by cues derived from the patient’s
brain. Alternatively, they could be predifferentiated in the
culture dish into a desired neuronal type, which could then be
transplanted back into the host brain. This latter option may
be preferable because graft tissue could be “tailored” to
specific applications (eg, pure cultures of dopamine neurones
for Parkinson’s disease). This option necessitates an ability to
direct the differentiation of stem cells into desired neuronal
phenotypes.

Controlling the phenotype

The problems associated with generating specific neuronal
phenotypes from neural stem cells are not trivial. Currently,
very little is known about the mechanisms that control
differentiation in HNSC culture systems. What has become
clear throughout the literature on rodents is that the major
default phenotype for neural stem cells is gamma-amino-
butyric acid (GABA)-producing neurones. This is unfortu-
nate with regard to the use of these cells for the treatment of
Parkinson’s disease, where neurones that produce dopamine
are obviously required.!® However, attempts to generate these
neurones in cultures of rodent neural stem cells have met with
some success.!”! Similarly, a limited number of studies have
shown that human embryonic and fetal neural stem cells can
be induced to generate dopamine-producing neurones.>?°
Despite the positive nature of these reports, the numbers of
neurones produced are very low.

As far as we know, there have been no published reports of
the successful differentiation of adult HNSCs into dopamin-
ergic neurones. The inability to consistently induce HNSCs
to differentiate into specific neuronal phenotypes is currently
the major stumbling block to using autologous neural stem
cell transplantation as therapy for Parkinson’s disease, and
indeed other CNS disorders. On a more positive note,
although the above data indicate that a dopaminergic pheno-
type is not a “default” choice of fate for HNSCs, given the
right conditions some cells do have the capacity to form
dopaminergic neurones iz vitro. What we need now is to learn
more about the mechanisms and signals involved in the
control of stem cell differentiation.

Transplanting human neural stem cells into the central
nervous system

It is of major interest to investigate the capacity of HNSCs to
engraft into the brain in a functionally meaningful manner in
well-characterised animal models of CNS dysfunction.
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Transplantation into the developing CNS

Studies have shown that stem cells derived from the embry-
onic or fetal human brain can successfully graft into the
developing rodent CNS.%®2! Once transplanted, these cells
survived, migrated and integrated seamlessly into the host
tissue, giving rise to cells from all three fundamental neuronal
lineages. The grafted cells also replaced deficient neuronal
populations in a model of neuronal degeneration in the
mouse cerebellum.’

Transplantation into the adult CNS

Transplantation studies in the adult CNS are more challeng-
ing; as the environment is fully established, developmental
cues are restricted, and space is more limited.'® Nevertheless,
investigators have shown that stem cells isolated from the
embryonic human brain survived and differentiated into
neurones and glia when grafted into various regions of the
adult rat brain.* Even more significantly, transplants of these
cells were able to improve cognitive function in aged rats.??

Currently, it is disorders like Parkinson’s disease which are
generating the most interest in terms of neural stem cell
therapies. When stem cells derived from the developing
human nervous system were transplanted into adult rats with
a well-characterised model of Parkinson’s disease (6-hydroxy-
dopamine lesions), the cells survived for up to a year after
transplantation, differentiated into neurones and astrocytes,
and were able to decrease motor disturbances in some of the
experimental animals.>?%2> These observations, particularly
that of functional recovery, hold great promise for humans.

To date, only one study has investigated the potential of
adult HNSCs to restore anatomy and function in the injured
adult CNS. In that study neural stem cells were transplanted
into the demyelinated adult rat spinal cord.!? These cells
elicited extensive remyelination of the cord, and, when tested
electrophysiologically, the axons conducted impulses at near-
normal conduction velocities. Thus, not only was remyelina-
tion observed, but it was also functionally significant. This
study is promising, but much more work is required. No stem
cell transplantation studies have been carried out in primate
models of neurodegenerative disorders. Primate models most
closely mimic the human situation, and would allow potential
risks and benefits to be more adequately assessed. This step
should not be neglected in the rush to apply HNSC therapies
to the clinic.

Risks to patients

A frequent concern is that the long-term propagation of stem
cells i vizro could induce tumour formation. For instance,
extensive culturing of rodent neural stem cells has been
shown to lead to genetic changes that altered cell growth and
differentiation.?* However, tumour formation has not been
observed in any culture systems of human CNS stem cells, or
after transplantation into any animal models to date. Further
experiments are needed to assess the tumorigenic potential of
HNSCs.
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Clinical studies

In the past, the vast majority of clinical transplantation trials
for Parkinson’s disease have attempted to replace dopaminer-
gic neurones with transplants of different types of dopamine-
producing cells, including adrenal medulla cells and human
fetal cells.?®> Overall, the results have been moderately encour-
aging and no major risks have emerged. However, the paucity
of long-term cell survival, risks of immunological rejection,
logistical issues relating to the supply of tissue, and ethical
concerns associated with the procurement of fetal tissue have
precluded transplantation from becoming an acknowledged
viable treatment option for Parkinson’s disease. Despite this,
transplantation studies have paved the way for the transplan-
tation of stem cells in Parkinson’s disease. The situation is far
more complex for spinal cord injury. Restoring spinal cord
function requires reconstruction of complex neuronal cir-
cuitry, and it is likely that a “cocktail” of treatments or cell
types will be required (ie, cells of both glial and neuronal
origin).2® As a result, trials for spinal cord injury are likely to
lie further into the future.

The way ahead

Although this report has focused on HNSC:s, it is interesting
to note that experimental animal studies are casting consider-
able light on many facets of adult neurogenesis. For example,
it has been suggested that an interplay between astrocytes and
the microenvironment may bring about adult neurogenesis.?’
Another study has concluded that hippocampal astrocytes
provide a unique niche for adult neurogenesis.?® These
researchers further postulate that the capability for adult
neurogenesis may lie in regionally specified astrocytes in the
adult CNS providing appropriate signals. Such possibilities
could also prove significant in humans.

HNSC biology is poised to make an impact on clinical
neural transplantation programs. However, there is a grave
danger that the rush to apply stem cell therapies in actual
patients may lead to scientifically ill-founded clinical trials
that lack adequate support from rigorous preclinical
research.?” Human trials should never be initiated prema-
turely in response to pressures from disabled patients, their
doctors or families.

While the results with HNSCs (both embryonic and adult)
have been very promising thus far, there are still hurdles to be
overcome. We recommend that trials in human patients
should not be initiated until:
® The in-vitro manipulation of HNSCs becomes more
sophisticated — it needs to be shown that desired neuronal
phenotypes (eg, dopamine-producing neurones) can be relia-
bly cultured, on demand, and in clinically significant quanti-
ties;
® More convincing and clinically relevant animal studies are
carried out — clinical trials should not be initiated on the
basis of results from a limited number of rodent studies; and
m Neurological testing shows significant and long-lasting func-
tional recovery after transplantation experiments in well-
characterised animal models of human CNS disorders.

It is only once such proof-of-concept has been demon-
strated for stem cells in both culture systems and well-
documented animal models of human CNS injury and
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disease that clinical trials with adult HNSCs will be scientifi-
cally and ethically justified.
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