
 

 

 

 

 

Supporting Information 

Supplementary methods and results 

This appendix was part of the submitted manuscript and has been peer reviewed.  
It is posted as supplied by the authors. 

 

Appendix to: McAndrew F, Abeysuriya R, Scott N. Evaluating the impact of COVID-19 vaccination 
strategies on infections and hospitalisations in Victoria with non-seasonal epidemic wave patterns:  
a modelling study. Med J Aust 2025; doi: 10.5694/mja2.52677. 

  



2 

Supplementary methods 

1. Model inputs 

1.1. Model compartments and parameters 

Table 1. Model compartments and stratification 

Label Model stratification Description 

𝑎 Age Superscript 𝑎 representing compartments that have been stratified 
by age, for age category a ∈ A={0-5 years, 6-17 years, 18-64 years, 
65-79 years, 80+ years} 

𝒗 Variant Superscript 𝑣 representing compartments that have been stratified 
by variant for 𝑣 ϵ 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} 

Label Compartment Description 

𝑆𝑎,𝑣 Susceptible People who have never been infected or vaccinated 

𝐸𝑎,𝑣 Exposed People who have recently been infected, but are not infectious, from 
the susceptible or recovered compartments 

𝐼𝑎,𝑣 Infected People who are infectious 

𝑅1
𝑎,𝑣 Recovered 0-3 months People 0-3 months since their last immune boosting event 

𝑅2
𝑎,𝑣 Recovered 3-6 months People 3-6 months since their last immune boosting event 

𝑅3
𝑎,𝑣 Recovered 6-12 months People 6-12 months since their last immune boosting event 

𝑅4
𝑎,𝑣 Recovered 12 months People 12+ months since their last immune boosting event 

Table 2. Model parameters, including symbols used in the equations in the Supporting Information file, 

parameter name, value and source 

Symbol Parameter Value Source 

𝜅 Cross immunity 0.1 (baseline) Determined by calibration 
(Supporting Information, part 2) 

𝜆𝑣(𝑡) Force of infection for variant 𝑣  A function described in 
section 1.2, Model 
equations, which is the 
prevalence of variant 𝑣 at 
time 𝑡, multiplied by a 
proportionality constant. 

Dynamically calculated during 
model run 

𝜒 Force of infection proportionality 
constant 

218 (baseline) (±5 for 
uncertainty) 

Determined by calibration 
(Supporting Information, part 2) 

𝜎 Duration of exposure 2 days Kremer et al. 2022 (1) 

𝛾 Duration of infection 2.2 days Determined by calibration 
(Supporting Information, part 2), 
accounting for mean effects of 
isolation. 

𝜔1 Recovery duration from 𝑅1 to 𝑅2 90 days Definition of compartment 

𝜔2 Recovery duration from 𝑅2 to 𝑅3 90 days Definition of compartment 

𝜔3 Recovery duration from 𝑅3 to 𝑅4 180 days Definition of compartment 

𝜓1 Protection against reinfection 0-3 
months since vaccination 

74.8% (66.0% - 81.9%) Bobrovitz et al. (2) 2023; Arabi et 
al. 2023 (3) 

𝜓2 Protection against reinfection 3-6 
months since vaccination 

61.6% (51.2% - 71.1%) Bobrovitz et al. (2) 2023; Arabi et 
al. 2023 (3) 

𝜓3 Protection against reinfection 6-12 
months since vaccination 

13.0% (11.0% - 14.0%) Bobrovitz et al. (2) 2023; Arabi et 
al. 2023 (3) 

𝜓4 Protection against reinfection 12+ 
months since vaccination 

13.0% (11.0% - 14.0%) Bobrovitz et al. (2) 2023; Arabi et 
al. 2023 (3) 

η𝑎  Probability of severe disease given 
COVID-19 infection for age category a 
∈ {0-5 years, 6-17 years, 18-64 years, 
65-79 years, 80+ years} 

0.00288 for 0-5 years 
0.00288 for 6-17 years 
0.02052 for 18-64 years 
0.07002 for 65-79 years 
0.099 for 80+ years 

Victorian Department of Health 
COVID-19 treatment data, available 
in previous Burnet Institute COVID-
19 modelling reports (4, 5) 
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Symbol Parameter Value Source 

ξ1 Protection against severe disease given 
infection 0-3 months since immune 
boosting event (vaccination or 
infection) 

60% Cromer et al. 2023 (6) 

𝜉2 Protection against severe disease given 
infection 3-6 months since immune 
boosting event (vaccination or 
infection) 

55% Cromer et al. 2023 (6) 

𝜉3 Protection against severe disease given 
infection 6-12 months since immune 
boosting event (vaccination or 
infection) 

50% Cromer et al. Nat Commun 2023 
(6) 

𝜉4 Protection against severe disease given 
infection 12+ months since immune 
boosting event (vaccination or 
infection) 

40% Cromer et al. 2023 (6) 

ζ Treatment efficacy against severe 
disease given infection 

14% Assuming treatment with 
molnupiravir (7) 

𝜃𝑎 Treatment coverage in age category a ∈ 
{0-5 years, 6-17 years, 18-64 years, 65-
79 years, 80+ years} 

0% for 0-5 years 
0% for 6-17 years 
0% for 18-64 years 
17.5% for 65-79 years 
88.9% for 80+ years 

Victorian Department of Health 
COVID-19 treatment data, available 
in previous Burnet Institute COVID-
19 modelling reports (4, 5) 

𝜈 Birth rate (per year) 97,500 (±2500 for 
uncertainty) 

2022 Australian census, Victorian 
data (8) 

𝜇𝑎 Non-COVID-19 mortality rate for age 
category a ∈ {0-5 years, 6-17 years, 18-
64 years, 65-79 years, 80+ years} 

0.00074 for 0-5 years 
0.00015 for 6-17 years 
0.00181 for 18-64 years 
0.0175 for 65-79 years 
0.1026 for 80+ years 
(±5% for uncertainty) 

Australian Institute of Health and 
Welfare (9) 

𝜇𝐶
𝑎 COVID-19 case fatality rate in the 

absence of prior immunity or 
treatment, for age category a ∈ {0-5 
years, 6-17 years, 18-64 years, 65-79 
years, 80+ years} 

0.00002 for 0-5 years 
0.00002 for 6-17 years 
0.00032 for 18-64 years 
0.0069 for 65-79 years 
0.0554 for 80+ years 
(±5% for uncertainty) 

Knock et al. 2021 (10); Nyberg et 
al. 2022 (11) 

𝛼 Vaccination rate Scenario dependent. See section 1.6 

𝜌 Seeded cases used to initiate new 
variant when introduced. 

10 Determined by calibration 
(Supporting Information, part 2) 

𝜙𝑎 Rate of ageing out of age category a, 
for a ∈ {0-5 years, 6-17 years, 18-64 
years, 65-79 years, 80+ years} 

1/6 for 0-5 years 
1/12 for 6-17 years 
1/47 for 18-64 years 
1/15 for 65-79 years 
0 for 80+ years 

Definition 

𝑁𝑎 Population size for age category a ∈ {0-
5 years, 6-17 years, 18-64 years, 65-79 
years, 80+ years} 

382,727 for 0-5 years 
1,190,902 for 6-17 years 
3,953,396 for 18-64 years 
812,897 for 65-79 years 
286,042 for 80+ years 

2022 Australian census, Victorian 
data (8) 
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1.2. Model dynamics and governing equations 

Initial infection and recovery 

People in the model are assumed to begin as susceptible (S), where they can become infected at a 
rate proportional to the dynamic prevalence of coronavirus disease 2019 (COVID-19) in the model 
(the force of infection is denoted λ, which is the dynamic prevalence multiplied by a proportionality 
constant 𝜒). Following infection, people move to the exposed (E) compartment for an mean duration 
(σ) where they are not yet infectious to others, and then to the infected (I) compartment where they 
are infectious to others. After an mean duration of infection (γ), people move sequentially through a 
series of recovered compartments to approximate waning immunity over time (𝑅1 for an mean 
duration ω1; 𝑅2 for an mean duration ω2; 𝑅3 for an mean duration ω3) before reaching a fourth 
recovered compartment (𝑅4) where they remain in the absence of further infection or vaccination, 
under the assumption that they retain some ongoing protection against reinfection or severe 
disease.  

Reinfection 

People can become reinfected from any of the recovered compartments and move back to the 
exposed compartment. However, the recovered compartments 𝑅1, 𝑅2, 𝑅3, 𝑅4 have infection risks 
reduced by factors ψ1, ψ2, ψ3 and ψ4 respectively, compared to those in the susceptible 
compartment. Waning of immunity over time is approximated by insisting that ψ1 ≥ ψ2 ≥ ψ3 ≥ ψ4.  

Vaccination 

Vaccination is also included in the model at a rate (α) for people in the susceptible or recovered 
compartments. For simplicity, infection and vaccination are modelled to be equal “immune boosting 
events” that can wane over time, and hence when someone in the S compartment is vaccinated they 
move to the 𝑅1 compartment (which has highest protection against infection), and when someone 
from the 𝑅1, 𝑅2, 𝑅3 or 𝑅4 compartments is vaccinated they also move to the 𝑅1 compartment. Due 
to the high early vaccine coverage and the multiple COVID-19 waves in Victoria it is likely that most 
of the population has some form of hybrid immunity (i.e. vaccine-acquired plus exposure-acquired), 
and with limited data available on the distribution of immunity across the population it was not 
possible to stratify the model by immunity type. Therefore, for simplicity we have assumed the same 
probability of being reinfected following either vaccination or infection, and included a sensitivity 
analysis where vaccination is assumed to provide less protection than an infection (implemented as 
vaccinated people moving to the 𝑅2 compartment rather than the 𝑅1 compartment).  

People in the susceptible compartment who are vaccinated are moved to the R1 compartment of the 
variant with highest current prevalence in the model. People who have been vaccinated or infected 
previously, and are currently in a recovered compartment associated with a particular variant, are 
moved into the 𝑅1 compartment of that same variant when they are vaccinated (i.e. someone in a 
recovered compartment following infection with variant 𝑣1 is moved into the 𝑅1 compartment of 
variant 𝑣1). 

Stratification by age 

The model compartments are stratified by an ordered set of age categories A = {0-5 years, 6-17 years, 
18-64 years, 65-79 years, 80+ years}, denoted with the superscript 𝑎 𝜖 𝐴. Different age groups have 
different vaccination rates (α𝑎), vaccine eligibility, and risks of adverse outcomes following infection 
(see next subsection of this section). Based on 2024 Australian guidelines, people aged 18-64 years 
or 65+ years are only eligible for vaccination if it has been >12 months or >6 months respectively 
since their last immune boosting event (infection or vaccination), and people aged <18 years are not 
eligible for booster vaccine doses (12). For simplicity, homogeneous mixing is assumed between 
different age groups. 
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The model includes ageing between population groups, with ϕ𝑎 representing the rate of ageing out 
of age group 𝑎 (with ϕ80+ = 0 and ϕ𝑎 defined as 0 for a<0). 

Severity of outcomes following infection 

The outcomes of infection were calculated outside of the model based on infections. The number of 
new severe cases was calculated by taking the number of new infections for each age category 𝑎 𝜖 𝐴 
and multiplying by the age-specific probability of a case being severe given infection (η𝑎). For 
infections among people in the recovered compartments, the probability of an infection being severe 
was reduced by the corresponding level of protection (ξ1, ξ2, ξ3, ξ4 for the 𝑅1, 𝑅2, 𝑅3 and 𝑅4 
compartments respectively). 

Whether or not a severe case resulted in hospitalisation depended on the coverage and effectiveness 
of COVID-19 treatment. For each age group 𝑎 𝜖 𝐴, a proportion of severe cases were given treatment 
(θ𝑎) based off age-specific Victorian COVID-19 treatment data, which had an effectiveness (ζ) at 
preventing hospitalisation.  

Stratification by COVID-19 variant 

The 𝐸, 𝐼, and 𝑅 compartments were also stratified by COVID-19 variant, denoted using superscript 𝑣, 
where 𝑣 ϵ 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} corresponds to the n variants in the model (see section 1.3 for the 
number of variants in the implementation). For the 𝐸 and 𝐼 compartments this indicates current 
exposure or infection with a particular variant. For the recovered compartments, this is a record of 
which variant someone’s most recent immunity was derived from (either through infection or 
through vaccination that was formulated around the same time). The model assumes each variant is 
an Omicron sub-variant with the same incubation period (σ), duration of infection (γ) and severity of 
outcomes. 

A key feature that differentiates variants in the model is the relative cross-immunity between them 
(13). This is captured in the model using a cross-immunity parameter, where for 𝑣1, 𝑣2 ∈ 𝑉 the 
parameter 𝜅(𝑣1, 𝑣2) ≤ 1 is defined as the risk of infection with variant 𝑣2, for someone who has 
immunity from variant 𝑣1, relative to their risk of infection with variant 𝑣1. These cross-immunity 
parameters give newly introduced variants a competitive advantage in the model over existing 
circulating variants, and hence allows new variants to displace others and become dominant. 

People in the susceptible and recovered compartments can be infected with any variant circulating in 
the model. For people in the susceptible compartment, the risk of infection with a variant 𝑣 ϵ 𝑉 is 
proportional simply to the dynamic prevalence of the variant (the variant-specific force of infection is 
denoted λv(𝑡)). For people in the recovered compartment associated with a specific variant 𝑣1 ϵ 𝑉, 
the risk of infection with another variant 𝑣2 ϵ 𝑉 in circulation is proportional to the dynamic 
prevalence of the variant (the variant-specific force of infection is denoted λ𝑣2), the protection 
associated with the recovered compartment they are in (i.e. ψ1 to ψ4 for the 𝑅1 to 𝑅4 compartments 
respectively), and also to a cross immunity parameter κ(𝑣1, 𝑣2).  For example, for someone in age 

group 𝑎 ϵ 𝐴 who is 3-6 months post immune boosting event from variant 𝑣1 (i.e. they are in the 𝑅2
𝑎,𝑣1 

compartment), the rate of infection with variant 𝑣2 is proportional to λ𝑣2 ∗ (1 − ψ2 ∗ κ(𝑣1, 𝑣2)). 

Births and deaths 

The model includes age-specific all-cause mortality (μ𝑎) and COVID-19 mortality (μ𝐶
𝑎), and a birth rate 

(ν) that is fitted to maintain a constant model population (see table 1 and section 1.4). 

Model equations 

The model is governed by a set of ordinary differential equations. Let 

𝜆𝑣(𝑡) = 𝜒
∑ 𝐼𝑎,𝑣

 𝑎 𝜖 𝐴

∑ 𝑁𝑎
 𝑎 𝜖 𝐴
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be the force of infection in the model for variant 𝑣, where: 

 

𝑁𝑎 = 𝑆𝑎 + ∑ (𝐸𝑎,𝑣 + 𝐼𝑎,𝑣 + 𝑅1
𝑎,𝑣 + 𝑅2

𝑎,𝑣 + 𝑅3
𝑎,𝑣 + 𝑅4

𝑎,𝑣)

 𝑣 𝜖 𝑉

 

 

is the total model population in the age category a and 𝜒 is the force of infection proportionality 
constant.  

The susceptible population is only stratified by age as it is not associated with any variant. The 
susceptible (𝑆) compartment is defined by the following ordinary differential equation: 

 

𝑑𝑆𝑎

𝑑𝑡
= 𝜈 − ∑ 𝜆𝑤(𝑡)

𝑤∈𝑉

𝑆𝑎 − 𝛼𝑎𝑆𝑎 + ϕ𝑎−1𝑆𝑎−1 − ϕ𝑎𝑆𝑎 − 𝜇𝑎𝑆𝑎 

 

The remaining compartments are stratified by age and variant, and are governed by the following 
ordinary differential equations: 

 

𝑑𝐸𝑎,𝑣

𝑑𝑡
= ∑ 𝜆𝑤(𝑡)

𝑤∈𝑉

𝑆𝑎 + ∑ [(1 − 𝜅(𝑤, 𝑣)𝜓1)𝜆𝑣(𝑡)]

𝑤∈𝑉

𝑅1
𝑎,𝑤 + ∑ [(1 − 𝜅(𝑤, 𝑣)𝜓2)𝜆𝑣(𝑡)]

𝑤∈𝑉

𝑅2
𝑎,𝑤

+ ∑ [(1 − 𝜅(𝑤, 𝑣)𝜓3)𝜆𝑣(𝑡)]

𝑤∈𝑉

𝑅3
𝑎,𝑤 + ∑ [(1 − 𝜅(𝑤, 𝑣)𝜓4)𝜆𝑣(𝑡)]

𝑤∈𝑉

𝑅4
𝑎,𝑤 − 𝜎𝐸𝑎,𝑣

+ ϕ𝑎−1𝐸𝑎−1,𝑣 − ϕ𝑎𝐸𝑎,𝑣 − 𝜇𝑎𝐸𝑎,𝑣 

 

𝑑𝐼𝑎,𝑣

𝑑𝑡
= 𝜎𝐸𝑎,𝑣 − 𝛾𝐼𝑎,𝑣 + ϕ𝑎−1𝐼𝑎−1,𝑣 − ϕ𝑎𝐼𝑎,𝑣 − (𝜇𝑎 + 𝜇𝐶

𝑎)𝐼𝑎,𝑣 

 

𝑑𝑅1
𝑎,𝑣

𝑑𝑡
= 𝛾𝐼𝑎,𝑣 − 𝜔1𝑅1

𝑎,𝑣 − ∑ [(1 − 𝜅(𝑣, 𝑤)𝜓1)𝜆𝑤(𝑡)]

𝑤∈𝑉

𝑅1
𝑎,𝑣 + 𝛼𝑎(𝑆𝑎 + 𝑅3

𝑎,𝑣 + 𝑅4
𝑎,𝑣)

+ ϕ𝑎−1𝑅1
𝑎−1,𝑣 − ϕ𝑎𝑅1

𝑎,𝑣 − 𝜇𝑎𝑅1
𝑎,𝑣 

 

𝑑𝑅2
𝑎,𝑣

𝑑𝑡
= 𝜔1𝑅1

𝑎,𝑣 − 𝜔2𝑅2
𝑎,𝑣 − ∑ [(1 − 𝜅(𝑣, 𝑤)𝜓2)𝜆𝑤(𝑡)]

𝑤∈𝑉

𝑅2
𝑎,𝑣 + ϕ𝑎−1𝑅2

𝑎−1,𝑣 − ϕ𝑎𝑅2
𝑎,𝑣 − 𝜇𝑎𝑅2

𝑎,𝑣 

 

𝑑𝑅3
𝑎,𝑣

𝑑𝑡
= 𝜔2𝑅2

𝑎,𝑣 − 𝜔3𝑅3
𝑎,𝑣 − ∑ [(1 − 𝜅(𝑣, 𝑤)𝜓3)𝜆𝑤(𝑡)]

𝑤∈𝑉

𝑅3
𝑎,𝑣 − 𝛼𝑎𝑅3

𝑎,𝑣 + ϕ𝑎−1𝑅3
𝑎−1,𝑣 − ϕ𝑎𝑅3

𝑎,𝑣

− 𝜇𝑎𝑅3
𝑎,𝑣 

 

𝑑𝑅4
𝑎,𝑣

𝑑𝑡
= 𝜔3𝑅3

𝑎,𝑣 − ∑ [(1 − 𝜅(𝑣, 𝑤)𝜓4)𝜆𝑤(𝑡)]

𝑤∈𝑉

𝑅4
𝑎,𝑣 − 𝛼𝑎𝑅4

𝑎,𝑣 + ϕ𝑎−1𝑅4
𝑎−1,𝑣 − ϕ𝑎𝑅4

𝑎,𝑣 − 𝜇𝑎𝑅4
𝑎,𝑣 
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Note there is an asymmetry between the summations for people leaving the recovered 
compartments due to infection (they can be infected by any variant) and people entering the 
exposed compartment for variant v, where they could have been infected following exposure to any 
other variant.  

Seeding cases 

A new variant 𝑣 ϵ 𝑉 is introduced by moving a number of people (ρ) from the infected compartment 
of the previously introduced variant into the infected compartment of the new variant (𝐼𝑎,𝑣). The 
non-zero prevalence of the variant v enables transmission to begin. The number of seeded cases 
used to introduce new variants (ρ) is determined through calibration (Supporting Information, part 
2). 
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1.3. Model computational implementation 

Having a large number of variants in the model is computationally challenging due to the number of 
compartments required, particularly for simulations run over many years. However, since new 
variants displace old ones relatively quickly, a simplification was used where the model is 
implemented using only four variants, with every fifth variant introduced re-using the first variant 
compartments. This is possible as after a variant has been out competed by four subsequent 
variants, there are few cases remaining in the model. The fractional number of people remaining in 
the Infected, Exposed and Recovered compartments are moved to the corresponding compartments 
of the variant that succeeded it, before seeding cases to initialize the new variant. For example, if the 
first, second, third and fourth variants were 𝑣1, 𝑣2, 𝑣3, 𝑣4 ∈ 𝑉, then to introduce the fifth variant, 
fractional remaining counts of people in the 𝑣1 exposed, infected or recovered compartments would 
be moved to the corresponding compartments for 𝑣2, and the new variant introduced using the 𝑣1 
compartments. This process then repeats for all further variants that are introduced. 

  



9 

1.4. Demographic characteristics 

The model includes the entire population of Victoria, split into five age categories: 0-5, 6-17, 18-64, 
65-79, 80+, based on 2022 census data for Victoria (Figure 1). The model population size assumed to 
be constant in scenarios since the results are intended to be applicable to the near future (achieved 
via fitting a birth rate, with the resulting total population in the model shown in  
Figure 2.2).  

The age categories in the model determine baseline vaccine coverage and eligibility for booster 
doses, and determine the probability that an infection is asymptomatic, mild, or severe. For 
simplicity we assume homogeneous mixing between age categories, which have been included to 
allow different age groups to be targeted in scenarios and for differential disease severity.  

To generate uncertainty intervals for simulations, the initial population size is sampled from a 
distribution with the mean values in Figure 1 and a standard deviation of 10,000 persons per age 
category. 

 

Figure 1. Victorian population size per age group in 2022 (8) 

Figure 2. Model population over time given 6-monthly epidemic waves with uniform (spread across year) 

low vaccination coverage 
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1.5. COVID-19 hospital admissions 

In 2024 most Australian states ceased their hospital surveillance programs. Figure 3 shows the 
number of hospital admissions over time in Australia between January 2022 – January 2024 when 
the hospital surveillance program was still active. During 2023 there were 62,000 COVID-19 hospital 
admissions (14). The Victorian Department of Health reported 16,000 COVID-19-related 
hospitalisations in 2023 (4) (the Victoria population comprises about 25% of the Australian 
population). 

Figure 3. COVID-19 hospital admissions for all of Australia between January 2022 - January 2024* 

 
* Data source: Australian Department of Health and Aged Care (14). 

 

1.6 Vaccination scenarios 

For this analysis we use the annual vaccination coverage based on July 2024 data for the proportion 
of each age group who had received a vaccine in the past 12 months (15). The annual campaign 
vaccine scenarios assume a COVID-19 vaccine rollout period equal to the 2024 Victorian influenza 
vaccine rollout (Figure 4), while the non-campaign vaccination scenarios assume vaccines are 
delivered uniformly across the year.  

Figure 4. Cumulative influenza vaccination coverage in Victoria, 2024* 

 
* Data source: Australian Government National Centre for Immunisation Research and Surveillance 2024 

influenza vaccine coverage report (15). 
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2. Model calibration 

The model baseline scenario includes epidemic waves of equal magnitude, with a peak every six 
months. These epidemic waves were generated by the entry of a new Omicron variant every six 
months which had reduced cross-immunity relative the previous variant (i.e. for people in the 
recovered compartments, immunity is less effective at preventing infection with the newly 
introduced variant). 

The objective of the model calibration was to ensure that (1) the cumulative hospitalisations from 
each epidemic wave in the model aligned with the cumulative hospitalisations from the Omicron XBB 
wave that occurred in Victoria in 2022; (2) the peak daily hospital admissions in the model aligned 
with the peak daily hospital admissions from Omicron XBB; (3) the mean COVID-19 infection 
incidence per 100,000 person years aligned with estimates from previous Victorian model fitting 
exercises (4); and (4) the rate that new variants displaced old variants, calculated as the number of 
days the new variant took to go from 5% to 20% share of infections, was consistent with Victorian 
wastewater data showing the relative prevalence of a new variant over time. 

To achieve this, an optimisation algorithm was used (a particle swarm optimisation algorithm from 
the Python pyswam library (16)), which varied the following parameters: 

• Overall multiplier to the force of infection (χ). 

• Variant relative cross immunity (Supporting Information, part 1); note that since we are 

modelling regular epidemic wave patterns, the calibration assumes that the cross-immunity 

advantage of each new variant is equal. For example, if 𝑣𝑖, 𝑣𝑖+1, 𝑣𝑖+2 ∈ 𝑉 are a sequence of 

variants being introduced, then the cross-immunity κ(𝑣𝑖, 𝑣𝑖+1) is equal to κ(𝑣𝑖+1, 𝑣𝑖+2)), 

• Number of incursions for new variant (ρ). 

• The probability of hospitalisation given severe COVID-19 in the absence of vaccination or 

prior infection. 

• Duration of infection (𝛾). The rationale for varying this parameter is to include the population 
mean effects of isolation (i.e. the mean duration of infection represents the mean duration of 
time spent infecting others). 

The optimisation aimed to minimise an objective function calculated as the fractional error of the 
modelled outputs compared to the real-world data. Within the objective function a higher weighting 
(3 times) was given to cumulative hospitalisations per epidemic wave and annual infection incidence 
per 100,000 person years compared to peak daily hospital admissions and the rate than new variants 
replaced old ones, as these measures were the closest related to the primary reported outcomes of 
this study. The final model runs using the calibrated parameters were compared with these historical 
takeover times to ensure the modelled takeover times lay within a realistic domain. 

The resulting calibrated parameters are shown in Table 3 for each assumption about future epidemic 
wave patterns parameters. Only the 6-monthly future epidemic wave scenario was calibrated to 
hospital data, since the others are theoretical variations of this. However, each assumed epidemic 
wave pattern was compared against wastewater data to ensure the variant displacement time was 
without a reasonable range. 

Table 3. Calibrated parameters for each future epidemic wave assumption 

Future epidemic wave 
assumption 

Force of 
infection 
multiplier 

Variant relative 
cross immunity 

Number of 
incursions 

Probability of 
hospitalisation given 

severe COVID-19 

Duration of 
infection (days) 

5-monthly waves 218 0.1 30 0.21 2.2 

6-monthly waves 218 0.2 30 0.21 2.2 

8-monthly waves 218 0.2 30 0.21 2.2 

Annual waves 218 0.2 30 0.21 2.2 

Shorter than XBB 218 0.35 30 0.21 2.2 

Taller than XBB 230 0.0 30 0.21 2.2 
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Supplementary results 

3. Simulation length 

Due to the variation in future epidemic wave periodicity and magnitude, the model proved highly 
sensitive to start or end of the measurement period. The model was run for 1-, 5- and 10-years with 
different simulation lengths tested to investigate the impact on the simulation length. For 1- and 5-
years (figure 10, figure 11) the results proved sensitive to the start time chose, but for a 10-year 
projection period the results converged and were less sensitive to the start or end points chosen 
(figure 12).  

Figure 5. Proportional difference in annual hospitalisation incidence between the baseline and annual 

vaccination starting in August, given different simulation lengths between 1- and 2-years 
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Figure 6. Proportional difference in annual hospitalisation incidence between the baseline and annual 

vaccination starting in August, given different simulation lengths between 5- and 6-years 
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Figure 7. Proportional difference in annual hospitalisation incidence between the baseline and annual 

vaccination starting in August, given different simulation lengths between 10- and 11-years 
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3.3. Epidemic wave patterns 

All vaccination scenarios were run with several sets of different assumptions regarding the periodicity and 
magnitude of epidemic waves. Figures 11 and 12 display new infections new hospitalisations respectively over 
a 10-year period for each modelled future epidemic wave scenario 

 
Figure 8. Daily new infections over a 10-year period for different future epidemic wave patterns 
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Figure 9. Daily new hospitalisations over a 10-year period for different future epidemic wave patterns 
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Table 4. Proportional changes (with 95% confidence interval) in projected median annual incidence of SARS-CoV-2 infections per 100 000 person-years, compared 

with baseline, by vaccination scenario and epidemic wave characteristics 

 Interval between COVID-19 waves 

Scenario 6 months 5 months 8 months 

12 months 

(March peak) 

12 months 

(July peak) 

12 months 

(November peak) 

Baseline (number of infections per 100 000 
person-years) 

118 288 
(104 221–143 107) 

150 243 
(134 188–178 415) 

93 879 
(83 476–114 029) 

78 002 
(63 547–97 928) 

78 184 
(63 695–97 983) 

78 176 
(63 592–98 023) 

High coverage, vaccinations spread across year –15% 
(–15% to –14%) 

–7% 
(–7% to –6%) 

–17% 
(–17% to –15%) 

–31% 
(–32% to –29%) 

–31% 
(–32% to –29%) 

–31% 
(–32% to –29%) 

Increased coverage for people aged 65 years or 
more 

–6% 
(–7% to –5%) 

–3% 
(–4% to –3%) 

–7% 
(–8% to –6%) 

–18% 
(–20% to –17%) 

–18% 
(–20% to –16%) 

–18% 
(–20% to –16%) 

Coverage for people under 65 years of age 
doubled 

0% 
(0% to 0%) 

0% 
(0% to 0%) 

0% 
(0% to 0%) 

–2% 
(–2% to –2%) 

–2% 
(–2% to –2%) 

–2% 
(–2% to –2%) 

Annual vaccination campaign starting in March* –3% 
(–3% to –3%) 

–1% 
(–1% to –1%) 

–2% 
(–2% to –2%) 

–10% 
(–12% to –9%) 

–1% 
(–2% to 0%) 

–13% 
(–14% to –12%) 

Annual vaccination campaign starting in August –2% 
(–2% to –2%) 

–1% 
(–1% to –1%) 

–2% 
(–2% to –2%) 

–13% 
(–15% to –11%) 

–10% 
(–11% to –8%) 

–1% 
(–2% to 0%) 

Annual vaccination campaign starting in 
December 

–2% 
(–3% to –2%) 

–1% 
(–1% to –1%) 

–2% 
(–2% to –2%) 

–1% 
(–2% to 0%) 

–13% 
(–14% to –12%) 

–10% 
(–11% to –8%) 

Coverage equivalent to influenza vaccination 
coverage, vaccinations spread across year 

–2% 
(–2% to –1%) 

–1% 
(–1% to –1%) 

–2% 
(–2% to –2%) 

–5% 
(–6% to –4%) 

–5% 
(–6% to –4%) 

–5% 
(–6% to –4%) 

No vaccination for people under 65 years of age 1% 
(1% to 1%) 

0% 
(0% to 0%) 

1% 
(1% to 1%) 

2% 
(2% to 2%) 

2% 
(2% to 2%) 

2% 
(2% to 2%) 

No COVID-19 vaccinations 2% 
(2% to 2%) 

1% 
(1% to 1%) 

3% 
(2% to 3%) 

8% 
(8% to 9%) 

8% 
(8% to 9%) 

8% 
(8% to 9%) 

CI = confidence interval; COVID-19 = coronavirus disease 2019; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2. 
* That is, same time as influenza vaccination campaign. 
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Table 5. Proportional changes (with 95% confidence interval) in projected median annual incidence of COVID-19-related hospitalisations per 100 000 person-

years, compared with baseline, by vaccination scenario and epidemic wave characteristics 

 Interval between COVID-19 waves 

Scenario 6 months 5 months 8 months 

12 months 

(March peak) 

12 months 

(July peak) 

12 months 

(November peak) 

Baseline (number of COVID-19-related 
hospitalisations per 100 000 person-years) 

326 
(288–383) 

403 
(361–467) 

264 
(236–313) 

222 
(183–270) 

223 
(185–272) 

223 
(184–271) 

High coverage, vaccinations spread across year –26% 
(–26% to –24%) 

–16% 
(–17%, –15%) 

–29% 
(–30%, –28%) 

–42% 
(–43%, –40%) 

–42% 
(–43%, –39%) 

–42% 
(–43%, –40%) 

Increased coverage for people aged 65 years or 
more 

–14% 
(–14% to –13%) 

–9% 
(–10%, –9%) 

–15% 
(–16%, –15%) 

–26% 
(–27%, –24%) 

–26% 
(–27%, –24%) 

–26% 
(–27%, –24%) 

Coverage for people under 65 years of age 
doubled 

0% 
(0% to 0%) 

0% 
(0%, 0%) 

0% 
(0%, 0%) 

–2% 
(–2%, –1%) 

–2% 
(–2%, –1%) 

–2% 
(–2%, –1%) 

Annual vaccination campaign starting in March* –6% 
(–6% to –5%) 

–3% 
(–3%, –3%) 

–5%  
(–5%, –5%) 

–10% 
(–11%, –9%) 

–6% 
(–7%, –6%) 

–14% 
(–15%, –13%) 

Annual vaccination campaign starting in August –5% 
(–5% to –4%) 

–3% 
(–3%, –3%) 

–5% 
(–5%, –5%) 

–14% 
(–15%, –13%) 

–9% 
(–11%, –8%) 

–7% 
(–7%, –6%) 

Annual vaccination campaign starting in 
December 

–4% 
(–5% to –4%) 

–3% 
(–3%, –3%) 

–5% 
(–5%, –5%) 

–7% 
(–7%, –6%) 

–14% 
(–15%, –13%) 

–9% 
(–10%, –8%) 

Coverage equivalent to influenza vaccination 
coverage, vaccinations spread across year 

–2% 
(–2% to –2%) 

–1% 
(–1%, –1%) 

–2% 
(–2%, –2%) 

–5% 
(–5%, –4%) 

–5% 
(–5%, –4%) 

–5% 
(–5%, –4%) 

No vaccination for people under 65 years of age 1% 
(1% to 1%) 

1% 
(1%, 1%) 

1% 
(1%, 1%) 

2% 
(2%, 2%) 

2% 
(2%, 2%) 

2% 
(2%, 2%) 

No COVID-19 vaccinations 6% 
(6% to 7%) 

5% 
(4%, 5%) 

7% 
(7%, 7%) 

13% 
(12%, 13%) 

13% 
(12%, 13%) 

13% 
(12%, 13%) 

CI = confidence interval; COVID-19 = coronavirus disease 2019. 
* That is, same time as influenza vaccination campaign. 
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4. Sensitivity analyses 

4.1. Vaccine efficacy 

As a sensitivity analysis we compared our assumption in the main analysis that vaccination and infection offer 
the same protection, to an alternate assumption where vaccination provides less protection than an infection 
(implemented as vaccinated people moving to the 𝑅2 compartment rather than the 𝑅1 compartment). For this 
test we considered the impact of annual vaccination starting in August compared to the baseline scenario of 
low uniform coverage given a 6-monthly epidemic wave pattern (Figure 7).  

If vaccination offered less protection than infection, this resulted in a smaller impact of the scenarios, with a 
2% and 4% reduction in the mean incidence of infections and hospitalisations respectively, compared to the 
main analysis which had a reduction in mean incidence of infections and hospitalisations of 3.5% and 6% 
respectively.  

Figure 10. Proportional difference in annual incidence of infections and hospitalisations per 100,000 

person years over a 10-year projection period compared to the baseline for annual vaccination starting in 

August with future epidemic waves occurring every 6-months. Bars are coloured by vaccine efficacy 
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4.2. Epidemic wave magnitude 

Figure 11. Proportional changes (with 95% confidence interval) in projected median annual incidence of SARS-CoV-2 infections per 100 000 person-years, 

compared with baseline, by vaccination scenario and epidemic wave infection peak height 

 
 

* The proportional differences data for these graphs are included in table 6.  
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Table 6. Proportional changes (with 95% confidence interval) in projected median annual incidence of SARS-CoV-2 infections per 100 000 person-years, compared 

with baseline, by vaccination scenario and epidemic wave infection peak height 

 Interval between COVID-19 waves, height of infections peak 

Scenario 

6 months, 
peak infections same as XBB 

wave 

6 months, 
peak infections 30% lower 

6 months, 
peak infections 15% higher 

Baseline (number of infections per 100 000 person-
years) 118,288 (104,221‒143,107) 101,910 (85,048‒126,856) 155,099 (143,674‒178,203) 

High coverage, vaccinations spread across year –15% (–15% to –14%) –36% (–37% to –32%) –2% (–2% to –2%) 
Increased coverage for people aged 65 years or more –6% (–7% to –5%) –13% (–14% to –11%) –1% (–2% to –1%) 
Coverage for people under 65 years of age doubled 0% (0% to 0%) 0% (0% to 0%) 0% (0% to 0%) 
Annual vaccination campaign starting in March* –3% (–3% to –3%) –5% (–5% to –5%) 0% (0% to 0%) 
Annual vaccination campaign starting in August –2% (–2% to –2%) –6% (–6% to –5%) 0% (0% to 0%) 
Annual vaccination campaign starting in December –2% (–3% to –2%) –7% (–7% to –6%) 0% (0% to 0%) 
Coverage equivalent to influenza vaccination 
coverage, vaccinations spread across year –2% (–2% to –1%) –4% (–5% to –4%) 0% (0% to 0%) 

No vaccination for people under 65 years of age 1% (1% to 1%) 2% (1% to 2%) 0% (0% to 0%) 
No COVID-19 vaccinations 2% (2% to 2%) 5% (5% to 5%) 0% (0% to 0%) 

CI = confidence interval; COVID-19 = coronavirus disease 2019. 
* That is, same time as influenza vaccination campaign. 
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Figure 12. Proportional changes (with 95% confidence interval) in projected median annual incidence of COVID-19-related hospitalisations per 100 000 person-

years, compared with baseline, by vaccination scenario and epidemic wave infection peak height 

 
* The proportional differences data for these graphs are included in table 7.  
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Table 7. Proportional changes (with 95% confidence interval) in projected median annual incidence of COVID-19-related hospitalisations per 100 000 person-

years, compared with baseline, by vaccination scenario and epidemic wave infection peak height 

 Interval between COVID-19 waves, height of infections peak 

Scenario 

6 months, 
peak infections same as XBB 

wave 

6 months, 
peak infections 30% lower 

6 months, 
peak infections 15% higher 

Baseline (number of COVID-19-related 
hospitalisations per 100 000 person-years) 

326 (288‒383) 283 (238‒342) 415 (386‒468) 

High coverage, vaccinations spread across year –15% (–15% to –14%) –45% (–47% to –42%) –12% (–12% to –11%) 
Increased coverage for people aged 65 years or more –6% (–7% to –5%) –21% (–22% to –19%) –7% (–7% to –7%) 
Coverage for people under 65 years of age doubled 0% (0% to 0%) 0% (0% to 0%) 0% (0% to 0%) 
Annual vaccination campaign starting in March* –3% (–3% to –3%) –7% (–7% to –7%) –1% (–1% to –1%) 
Annual vaccination campaign starting in August –2% (–2% to –2%) –7% (–8% to –7%) –3% (–3% to –3%) 
Annual vaccination campaign starting in December –2% (–3% to –2%) –8% (–9% to –8%) –3% (–3% to –3%) 
Coverage equivalent to influenza vaccination 
coverage, vaccinations spread across year 

–2% (–2% to –1%) –4% (–4% to –3%) –1% (–1% to –1%) 

No vaccination for people under 65 years of age 1% (1% to 1%) 2% (2% to 2%) 0% (0% to 0%) 
No COVID-19 vaccinations 2% (2% to 2%) 10% (9% to 10%) 4% (3% to 4%) 

CI = confidence interval; COVID-19 = coronavirus disease 2019. 
* That is, same time as influenza vaccination campaign.
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