Appendix (unedited, as supplied by the authors)

Details of the mathematical model

The model used for the simulations in this manuscript was adapted from a previously described model of HCV transmission among PWID¹, which is described below. Note that in the Victoria simulations we assume no immunity (σ =1 and ξ =0 in the model equations below, such that all those who attain SVR after treatment, or who spontaneously clear the acute stage, become susceptible).

In this system, X denotes susceptible PWID (including those who have cleared the infection and are Ab^+), C_1 denotes both chronically infected and acutely infected PWID which will proceed to chronic infections, C_2 denotes chronically infected PWID who did not achieve sustained viral response (SVR) after treatment, T denotes PWID in treatment, Z denotes immune PWID, τ is time in years, and where $N=X+Z+C_1+C_2+T$. The model equations are as follows:

$$\frac{dX}{d\tau} = \theta - \pi (1 - \delta + \delta \xi) \frac{C_1 + C_2}{N} X + \omega \alpha \sigma T - \mu X$$

$$\frac{dC_1}{d\tau} = \pi (1 - \delta) \frac{C_1 + C_2}{N} X - f(C_1) - \mu C_1$$

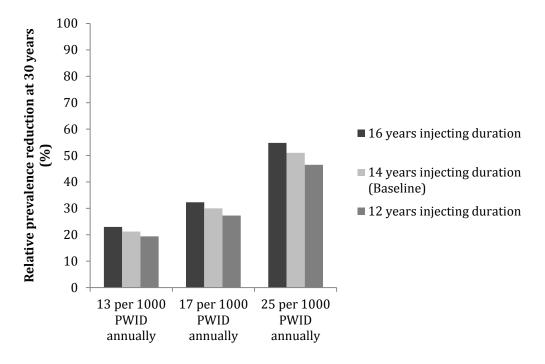
$$\frac{dT}{d\tau} = f(C_1) - \omega T - \mu T$$

$$\frac{dZ}{d\tau} = \pi \delta \xi \frac{C_1 + C_2}{N} X + \omega \alpha (1 - \sigma) T - \mu Z$$

$$\frac{dC_2}{d\tau} = \omega (1 - \alpha) T - \mu C_2$$

where

$$f(C_1) = \begin{cases} \Phi, & \Phi < C_1 \\ C_1, & 0 \le C_1 < \Phi. \end{cases}$$


New injectors enter the PWID population at a fixed rate θ , and leave each compartment (due to death or ceasing injection) proportional to the rate μ . Susceptible PWID can become infected at a rate which is proportional to the number of susceptibles, the fraction of the population chronically infected, and the infection rate, π . The acute infection spontaneously clears in the proportion δ , a fraction of which become immune at a proportion ξ . The remaining infected fraction which do not spontaneously clear, 1- δ , progress to chronic infection.

Chronically infected PWID can move into treatment at a rate f(C). In the treatment function, infected PWID are recruited onto treatment at a fixed rate, Φ people per 1000 PWID annually. If the infected population is driven below Φ people, all the infected PWID are treated. PWID exit treatment at a rate ω . A proportion of those treated do not respond (proportion '1- α ') and move from the treatment compartment to the non-responder compartment. The non-responders cannot be retreated, but can leave the PWID population proportional to the same exit rate as the other PWID, μ . In this model, both compartments of chronic infections contribute to the spread of the infection to susceptibles. The remaining proportion respond to treatment and are cured, a fraction of which (σ) become susceptible again with the remainder (1- σ) becoming immune.

Table 1. **Model parameters and values**. ^aWeighted average of genotype distribution and SVR rates. $\alpha = g_1 * \alpha_1 + g_{2/3} * \alpha_{2/3}$. ^bWeighted average of genotype distribution and treatment durations (assuming 24 weeks genotype 2/3, 48 weeks genotype 1). $1/\omega = (48*g_1 + 24*g_{2/3})/52$. ^cSum of the cessation and death rates. $\mu = \mu_1 + \mu_2$. ^dModel solved until steady state with this baseline treatment rate, and equilibrium values used as initial conditions for model projections. ^eInitial conditions calculated from model equilibrium values with current baseline treatment rates in Victoria.

Symbol	Definition	Value	Units	
g ₁	Proportion population	0.56	-	
	genotype1			
g _{2/3}	Proportion population	0.44	-	
	genotype 2/3			
δ	Proportion who spontaneously	0.26	-	
	clear the acute stage			
	Sustained viral response (SVR)			
α	Baseline ^a		-	
α_1	Genotype 1	0.45	-	
$\alpha_{2/3}$	Genotype 2/3	0.80	-	
$1/\omega$	Average duration of treatment	0.72^{b}	years	
μ	Exit rate from injecting	0.08^{c}	Per year	
$1/\mu_1$	Average duration of injecting career	14	years	
μ_2	Average PWID death rate	0.0083%	Per year	
θ	New PWID entry rate	Fit to total population of 1000 injectors	Per year	
π	Infection rate	Fit to give 50% chronic prevalence	Per year	
Φ	Antiviral treatment rate			
	Baseline in Victoria ^d	1 per 1000 PWID	Per year	
	Model projections ^e	5-40 per 1000 PWID	Per year	
ξ	Proportion who become	0	-	
	immune after spontaneous			
	clearance			
1-σ	Proportion who become	0	-	
	immune after SVR			

Figure 1. Relative reduction in chronic HCV prevalence at 30 years depending on the length of injecting and treatment rate.

^{*} The baseline prevalence is 50%, and baseline treatment rate 1/1000 PWID annually.

1	for hepatitis C re	educe the prevale	nce of HCV amoi	ng injecting drug (M. Can antiviral the user populations? A 011;54:1137-1144.	rapy